Ir arriba
Información del artículo

On the origin of multiscaling in stochastic-field models of surface growth

R. Gallego, M. Castro, J.M. López

The European Physical Journal B Vol. 89, nº. 9, pp. 189-1 - 189-7

Resumen:
Multiscaling appears in some non-equilibrium systems when different moments of a bulk averaged state variable scale with different and nontrivial exponents. This multiexponent scaling behaviour is highly nontrivial and is associated with different fractal properties at different observation scales. It is unclear what kind of generic mechanisms could make multiscaling to emerge in continuous hydrodynamic descriptions of dynamical systems with only local interactions, governed by partial-differential equations, in the continuum. Here we present an extensive numerical study of a continuous model of epitaxial thin-film growth, which main characteristic is that it includes infinitely many nonlinearities. For strong enough nonlinearity, the model shows effective multiscaling over a range of time/length scales, while normal monoscaling is actually recovered at long wavelengths. We conjecture that the existence of infinitely many weakly relevant nonlinear terms may lead to this nontrivial scaling behaviour in a generic way.


Palabras Clave: Statistical and Nonlinear Physics


Índice de impacto JCR y cuartil WoS: 1,436 - Q3 (2016); 1,600 - Q3 (2023)

Referencia DOI: DOI icon https://doi.org/10.1140/epjb/e2016-70132-5

Publicado en papel: Septiembre 2016.

Publicado on-line: Septiembre 2016.



Cita:
R. Gallego, M. Castro, J.M. López, On the origin of multiscaling in stochastic-field models of surface growth. The European Physical Journal B. Vol. 89, nº. 9, pp. 189-1 - 189-7, Septiembre 2016. [Online: Septiembre 2016]


    Líneas de investigación:
  • *Sistemas Mecánicos: Mecánica estructural, elementos de máquinas, prototipado rápido, metrología dimensional

pdf Previsualizar
pdf Solicitar el artículo completo a los autores